
VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page1 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Java Package

A java package is a group of similar types of classes, interfaces and sub-packages.

Package in java can be categorized in two form, built-in package and user-defined

package.

There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql

etc.

Here, we will have the detailed learning of creating and using user-defined packages.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page2 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can

use any directory name like /home (in case of Linux), d:/abc (in case of windows) etc.

If you want to keep the package within the same directory, you can use . (dot).

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will be accessible

but not subpackages.

The import keyword is used to make the classes and interface of another package

accessible to the current package.

Example of package that import the packagename.*

1. //save by A.java

2. package pack;

3. public class A{

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page3 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. import pack.*;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

8. obj.msg();

9. }

10. }
Output:Hello

2) Using packagename.classname

If you import package.classname then only declared class of this package will be

accessible.

Example of package by import package.classname

1. //save by A.java

2.

3. package pack;

4. public class A{

5. public void msg(){System.out.println("Hello");}

6. }

1. //save by B.java

2. package mypack;

3. import pack.A;

4.

5. class B{

6. public static void main(String args[]){

7. A obj = new A();

8. obj.msg();

9. }

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page4 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

10. }
Output:Hello

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will be

accessible. Now there is no need to import. But you need to use fully qualified name

every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql

packages contain Date class.

Example of package by import fully qualified name

1. //save by A.java

2. package pack;

3. public class A{

4. public void msg(){System.out.println("Hello");}

5. }

1. //save by B.java

2. package mypack;

3. class B{

4. public static void main(String args[]){

5. pack.A obj = new pack.A();//using fully qualified name

6. obj.msg();

7. }

8. }
Output:Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported

excluding the classes and interfaces of the subpackages. Hence, you need to import

the subpackage as well.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page5 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Note: Sequence of the program must be package then import then class.

Subpackage in java

Package inside the package is called the subpackage. It should be created to

categorize the package further.

Let's take an example, Sun Microsystem has definded a package named java that

contains many classes like System, String, Reader, Writer, Socket etc. These classes

represent a particular group e.g. Reader and Writer classes are for Input/Output

operation, Socket and ServerSocket classes are for networking etc and so on. So, Sun

has subcategorized the java package into subpackages such as lang, net, io etc. and

put the Input/Output related classes in io package, Server and ServerSocket classes in

net packages and so on.

The standard of defining package is domain.company.package e.g.

com.javatpoint.bean or org.sssit.dao.

Example of Subpackage

1. package com.javatpoint.core;

2. class Simple{

3. public static void main(String args[]){

4. System.out.println("Hello subpackage");

5. }

6. }

To Compile: javac -d . Simple.java

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page6 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

To Run: java com.javatpoint.core.Simple

Output:Hello subpackage

How to send the class file to another directory or
drive?

There is a scenario, I want to put the class file of A.java source file in classes folder of

c: drive. For example:

1. //save as Simple.java

2. package mypack;

3. public class Simple{

4. public static void main(String args[]){

5. System.out.println("Welcome to package");

6. }

7. }

To Compile:
ADVERTISEMENT

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page7 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory where the class file resides.

e:\sources> set classpath=c:\classes;.;

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of
java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java

that tells where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output:Welcome to package

Ways to load the class files or jar files
There are two ways to load the class files temporary and permanent.

ADVERTISEMENT

o Temporary

o By setting the classpath in the command prompt

o By -classpath switch

o Permanent

o By setting the classpath in the environment variables

o By creating the jar file, that contains all the class files, and copying the jar file in

the jre/lib/ext folder.

Rule: There can be only one public class in a java source file and it must be saved

by the public class name.

1. //save as C.java otherwise Compilte Time Error

2.

3. class A{}

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page8 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

4. class B{}

5. public class C{}

How to put two public classes in a package?
If you want to put two public classes in a package, have two java source files containing one public class, but keep the package

name same. For example:

1. //save as A.java

2.

3. package javatpoint;

4. public class A{}

1. //save as B.java

2.

3. package javatpoint;

4. public class B{}

What is static import feature of Java5?
Click Static Import feature of Java5.

How to Set CLASSPATH in Java

CLASSPATH: CLASSPATH is an environment variable which is used by Application

ClassLoader to locate and load the .class files. The CLASSPATH defines the path, to find

third-party and user-defined classes that are not extensions or part of Java platform.

Include all the directories which contain .class files and JAR files when setting the

CLASSPATH.

You need to set the CLASSPATH if:

ADVERTISEMENT

o You need to load a class that is not present in the current directory or any sub-

directories.

o You need to load a class that is not in a location specified by the extensions mechanism.

The CLASSPATH depends on what you are setting the CLASSPATH. The CLASSPATH

has a directory name or file name at the end. The following points describe what should

be the end of the CLASSPATH.

https://www.javatpoint.com/static-import-in-java

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page9 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

o If a JAR or zip, the file contains class files, the CLASSPATH end with the name of the zip

or JAR file.

o If class files placed in an unnamed package, the CLASSPATH ends with the directory

that contains the class files.

o If class files placed in a named package, the CLASSPATH ends with the directory that

contains the root package in the full package name, that is the first package in the full

package name.

The default value of CLASSPATH is a dot (.). It means the only current directory

searched. The default value of CLASSPATH overrides when you set the CLASSPATH

variable or using the -classpath command (for short -cp). Put a dot (.) in the new setting

if you want to include the current directory in the search path.

ADVERTISEMENT

If CLASSPATH finds a class file which is present in the current directory, then it will load

the class and use it, irrespective of the same name class presents in another directory

which is also included in the CLASSPATH.

If you want to set multiple classpaths, then you need to separate each CLASSPATH by

a semicolon (;).

The third-party applications (MySQL and Oracle) that use the JVM can modify the

CLASSPATH environment variable to include the libraries they use. The classes can be

stored in directories or archives files. The classes of the Java platform are stored in

rt.jar.

There are two ways to ways to set CLASSPATH: through Command Prompt or by

setting Environment Variable.

Let's see how to set CLASSPATH of MySQL database:

Step 1: Click on the Windows button and choose Control Panel. Select System.

Step 2: Click on Advanced System Settings.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page10 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Step 3: A dialog box will open. Click on Environment Variables.

Step 4: If the CLASSPATH already exists in System Variables, click on the Edit button

then put a semicolon (;) at the end. Paste the Path of MySQL-Connector Java.jar file.

If the CLASSPATH doesn't exist in System Variables, then click on the New button and

type Variable name as CLASSPATH and Variable value as C:\Program

Files\Java\jre1.8\MySQL-Connector Java.jar;.;

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page11 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

Remember: Put ;.; at the end of the CLASSPATH.

Difference between PATH and CLASSPATH

PATH CLASSPATH

PATH is an environment

variable.

CLASSPATH is also an environment variable.

It is used by the operating

system to find the executable

files (.exe).

It is used by Application ClassLoader to locate the .class file.

You are required to include the

directory which contains .exe

files.

You are required to include all the directories which contain

.class and JAR files.

PATH environment variable

once set, cannot be overridden.

The CLASSPATH environment variable can be overridden by

using the command line option -cp or -CLASSPATH to both

javac and java command.

How to Set CLASSPATH in Windows Using
Command Prompt

Type the following command in your Command Prompt and press enter.

1. set CLASSPATH=%CLASSPATH%;C:\Program Files\Java\jre1.8\rt.jar;

In the above command, The set is an internal DOS command that allows the user to

change the variable value. CLASSPATH is a variable name. The variable enclosed in

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page12 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

percentage sign (%) is an existing environment variable. The semicolon is a separator,

and after the (;) there is the PATH of rt.jar file.

ADVERTISEMENT

ADVERTISEMENT

How ext folder works in Java

The ext directory works a bit like the CLASSPATH. ext directory is the part of the class

loading mechanism. The classes which are available within JARs in the ext directory are

available to Java applications.

The following table demonstrates the key difference between the CLASSPATH and

Extension Mechanism:

Characteristics CLASSPATH Extension Mechanism

Class loading

order

CLASSPATH loads after bootstrap and

extension loading.

ext loads after bootstrap loading

but before CLASSPATH loading.

Scope It is an application specific. All JREs on

the host is the CLASSPATH

environment variable.

All JVMs are running in specific

JRE java.ext.dirs.

Package name java.class.path is used to find the

directories and JAR archives

containing class files.

java.ext.dirs is used to specify

where the extension mechanism

loads classes.

Specification It is specified by name including the

extension.jar and directory containing

.class files.

All JAR files in specified directories

are loaded.

The mechanism will pick up all .jar files from the extension directory even if the file

does not have the .jar extension. The implementation of this is that if one can change

the name of a jar placed in a classpath directory to have an extension other than .jar.

The wildcard (*) does not pick it up. This technique will not work with the extension

directory.

ADVERTISEMENT

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page13 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

ADVERTISEMENT

Let's understand the execution process through an example.

A.java

1. public class A

2. {

3. public String toString()

4. {

5. return "hello";

6. }

}

7. B.java

1. public class B

2. {

3. public static void main(final String[] args)

4. {

5. System.out.println(new A());

6. }

7. }

Compile the A.java file. we will archive the compiled A.class file into A.jar. Place this

JAR file into another directory than the compiled B.class file.

To demonstrate the use of the classpath, we place the A.jar file in a directory

C:\JavaPrograms and will access that JAR through wildcard (*) for B to use.

We found that B can still load the A.class while we had deleted it from the current

directory. The Java launcher was explicitly looked for C:\JavaProgram. It is also possible

to have the class loaded without its presence in the same directory and explicit

classpath specification.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page14 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

It is often referred to as a benefit of Using the extension mechanism because all

applications which are using that JRE can see the same classes without the need to

specify them on the classpath explicitly.

What happens if we change the name of A.jar into A.backup in the same CLASSPATH-

referenced directory. NoClassDefFoundError is encountered when we do the same

because the CLASSPATH-reference does not have the .jar extension.

Java Create Jar Files

In Java, JAR stands for Java ARchive, whose format is based on the zip format. The JAR

files format is mainly used to aggregate a collection of files into a single one. It is a

single cross-platform archive format that handles images, audio, and class files. With

the existing applet code, it is backward-compatible. In Java, Jar files are completely

written in the Java programming language.

We can either download the JAR files from the browser or can write our own JAR files

using Eclipse IDE.

The steps to bundle the source code, i.e., .java files, into a JAR are given below. In this

section, we only understand how we can create JAR files using eclipse IDE. In the

following steps, we don't cover how we can create an executable JAR in Java.

1. In the first step, we will open Eclipse IDE and select the Export option from

the File When we select the Export option, the Jar File wizard opens with the

following screen:

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page15 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page16 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

2. From the open wizard, we select the Java JAR file and click on the Next The

Next button opens JAR Export for JAR File Specification.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page17 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page18 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

3. Now, from the JAR File Specification page, we select the resources needed for

exporting in the Select the resources to export After that, we enter the JAR

file name and folder. By default, the Export generated class files and

resources checkbox is checked. We also check the Export Java source files

and resources checkbox to export the source code.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page19 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

If there are other Java files or resources which we want to include and which are

available in the open project, browse to their location and ensure the file or

resource is checked in the window on the right.

4. On the same page, there are three more checkboxes, i.e., Compress the

content of the JAR file, Add directory entries, and Overwrite existing files

without warning. By default, the Compress content of the JAR file checkbox

is checked.

5. Now, we have two options for proceeding next, i.e., Finish and Next. If we click

on the Next, it will immediately create a JAR file to that location which we

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page20 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

defined in the Select the export destination. If we click on the Next button, it

will open the Jar Packaging Option wizard for creating a JAR description,

setting the advance option, or changing the default manifest.

 For now, we skip the Next and click on the Finish button.

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page21 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

6. Now, we go to the specified location, which we defined in the Select the export

destination, to ensure that the JAR file is created successfully or not.

Java Static Import

The static import feature of Java 5 facilitate the java programmer to access any static

member of a class directly. There is no need to qualify it by the class name.

Advantage of static import:

o Less coding is required if you have access any static member of a class oftenly.

Disadvantage of static import:

o If you overuse the static import feature, it makes the program unreadable and

unmaintainable.

Simple Example of static import

1. import static java.lang.System.*;

2. class StaticImportExample{

3. public static void main(String args[]){

4.

5. out.println("Hello");//Now no need of System.out

6. out.println("Java");

7.

8. }

9. }
Test it Now

Output:Hello

 Java

https://www.javatpoint.com/opr/test.jsp?filename=StaticImportExample

VISION INSTITUTE OF TECHNOLOGY, Subject:- Object Oriented Programming with
Java (BCS403)

ALIGARH

Unit-1 Object Oriented Programming with Java

Page22 Faculty: SHAHRUKH KAMAL

Shahrukhkamal7@gmail.com

What is the difference between import and static import?

The import allows the java programmer to access classes of a package without package

qualification whereas the static import feature allows to access the static members of

a class without the class qualification. The import provides accessibility to classes and

interface whereas static import provides accessibility to static members of the class.

